AG Technologie und Metrologie

Die Arbeitsgruppe Metrologie und Technologie beschäftigt sich sowohl mit der Entwicklung neuer und innovativer Analysenwerkzeuge und -technologien als auch mit der Umsetzung fundamentaler metrologischer Grundsätze der Analytischen Chemie. Innovative Analysewerkzeuge und -technologien werden dafür entwickelt und bewertet. Neue messtechnische Prinzipien werden validiert und auf analytische Routinen übertragen.

Current projects

isoTRAC: Development of methods for the analysis of new isotopic systems for the use as tracers in geological, environmental and material sciences

Abstract: The project isoTRAC aims at fostering the Styrian research node of analytical sciences of the Universities Montanuniversität Leoben and University Graz (and subsequently also the TU Graz):

1) to establish a modern mass spectrometer (thermal ionization mass spectrometer - TIMS) for the highly precise analysis of new isotope systems and

2) to investigate new isotope systems in the environmental sciences (characterization of fine dust), geosciences (characterization of deposits) and materials science (abrasion behavior of refractory materials)

Project funding: ZUKUNFTSFONDS STEIERMARK – Das Land Steiermark

Project partners: Karl-Franzens-Universität Graz (KFU) - Institut für Chemie; Institut für Erdwissenschaften

Project start: March 2019

Project Team: Karl-Franzens-Universität Graz (KFU) - Institut für Chemie; Institut für Erdwissenschaften, Lehrstuhl für Allgemeine und Analytische Chemie, Montanuniversität Leoben – Thomas Prohaska (PI)


Ca isotopes as tracers in life sciences

Abstract: Biological processes like biomineralization and the (human) Ca homeostasis can produce significant fractionation of Ca isotopes. The analysis of Ca isotopes in biological tissue, including human bone, blood and urine, bears great potential as diagnostic tool for changes in bone mineral balance and for bone diseases like osteoporosis. This project aims at the development of a fully validated analytical approach to determine stable Ca isotope ratios at low analyte levels and low combined measurement uncertainties in biological samples using thermal ionization mass spectrometry (TIMS). The work is contucted at the University of Calgary (Canada) in Professor Mike Wieser’s Isotope Lab.

Project funding: Springer - Monatshefte der Chemie, University of Calgary

Project partners: University of Calgary (CA)

Project start: October 2018

Project Team:Anika Retzmann, Michael Wieser, Dorothy Walls, Kerri A. Miller, Thomas Prohaska


Combined analytical approach for spatio-temporal solute imaging of aqueous magnesium metal corrosion dynamics

Abstract: The potential of a combined analytical approach using the diffusive gradients in thin films (DGT) technique and planar pH-optodes (PO) is studied to assess the spatio-temporal surface corrosion dynamics of fine-structured metal materials made from magnesium (Mg) alloys. Owing to their good biocompatibility and mechanical properties, these materials are intensely studied for their use as biodegradable implants in medicine. The combined analytical approach represents a powerful tool in Mg corrosion research and may substantially contribute to obtain adequate information on metal degradation processes.

Project partners: University of Natural resources and Life Sciences, Vienna

Project start: January 2018

Project Team:Stefan Wagner, Christina Roschitz, Markus Puschenreiter, Jakob Santner, Johanna Irrgeher, Thomas Prohaska (PI)


“ISOprint” - Development of “Diffusive Gradient in Thin Films (DGT) – multi-collector ICP-MS techniques” for location-specific isotopic fingerprinting of S, Sr and Pb in soils as a tool for the provenance determination of primary agricultural products

Abstract: The project aims at developing a method combining diffusive gradients in thin films (DGT) with multi collector ICP-MS to assess the isotopic composition of the DGT-labile (i.e. reversibly adsorbed (bound)) fraction of sulfate-S, Sr and Pb in soils. One major motivation and envisaged application of the development is the consideration that the combination of these isotopic signatures has the potential to act as direct geographic location-specific fingerprint for the provenance determination of primary agricultural products. The project will be accomplished by developing and characterizing adequate gels.

Greenhouse experiments will provide more detailed information about the transfer of the soil isotopic fingerprint into plants. The method will be tested on selected primary agricultural products by analyzing both plants as well as the DGT-labile fraction.

Project funding: FWF Stand Alone Project

Project partners: University of Natural resources and Life Sciences, Vienna

Project start: January 2018

Project Team:Stefan Wagner, Jakob Santner, Ara Bitar, Sarah Mühlbacher, Thomas Prohaska (PI)