

Active and passive tracing of non-metallic inclusions in steel using rare earth elements

<u>Christoph Walkner^{1*}, Kathrin Thiele², Susanne K. Michelic², Thomas C. Meisel¹, Sergiu Ilie³, Roman Rössler³</u> and Thomas Prohaska¹ *Christoph.walkner@unileoben.ac.at

¹ Montanuniversität Leoben, Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, 8700 Leoben, Austria

² Montanuniversität Leoben, Christian Doppler Laboratory for Inclusion Metallurgy in Advanced Steelmaking, 8700 Leoben, Austria

³ voestalpine Stahl GmbH, 4020 Linz, Austria

Introduction

Non-metallic inclusions (NMIs) negatively affect both physical and corrosive properties of steels, to the point of material failure (Fig. 1). In addition, clogging, i.e. the aggregation of non-metallic particles during the steel casting process, can further reduce steel quality or even interrupt the process (Fig. 2). [1] Within the present study, we investigated the formation of NMIs and clogging in titanium stabilised ultra-low carbon (Ti-ULC) steel, a material mainly used for automobile panels (Fig. 3).

Results & Conclusions

- Results gained using both the active and passive tracing approach consistently link the clogging material from the SEN to the aluminium added in the deoxidation step.
- Agglomeration of aluminium oxide particles is the main reason for clogging during the Ti-ULC steel casting process.

Steel production process

1: SEM image of a non-Fig. metallic inclusion (NMI) in steel which has caused cracking.

Fig. 2: Clogging at the Fig. 3: Automobile panels as an example for the use of Ti-ULC steel. [2] submerged entry nozzle (SEN)

Sample preparation for ICP-MS analysis

Fig. 5: Schematic of the steel production process, Material flows and sampling strategy.

Active tracing

In the active tracing approach, La and Ce are added to the steel melt on an industrial scale. [4] Due to their high oxygen affinity, these elements are quickly transferred into oxide phases, such as NMIs consisting mainly of AI oxide, following equation 1:

Passive tracing

In the passive tracing approach, distribution patterns (chondrite normalised mass fractions [3]) of the rare earth elements (REE) in clogging material from the SEN and potential source materials are compared.

Fig. 4: Chondrite normalised REE mass fractions determined using ICP-MS after Na₂O₂ sintering or HCI/HNO₃ digestion in SEN clogging material and reference samples. Values for Pm (*), which does not occur naturally, were interpolated between Nd and Sm.

 $2 \operatorname{Al}_2 \operatorname{O}_3 + 2 \operatorname{La} \rightleftharpoons \operatorname{La}_2 \operatorname{O}_3 \cdot \operatorname{Al}_2 \operatorname{O}_3 + 2 \operatorname{Al}_2 \operatorname{O}_3$ (1)

Steel samples from two heats (using the same SEN) were analysed using ICP-MS (Fig. 6), heat 1 with La addition and heat 2 with Ce addition (~40 mg La/Ce per kg steel). The clogging layer formed at the SEN was investigated using SEM/EDS, as were individual NMIs found in the steel slabs (Fig. 7).

Fig. 6: La and Ce mass fractions in steel samples taken throughout the process, determined using ICP-MS after acid digestion.

- Similar trends are visible in the REE patterns of auxiliary material II (sliding gate sand) and the clogging sample.
- Both AI granules (added for deoxidation) and clogging sample have high Nd and low Eu contents.
- Clogging formation can be explained by a combination Al_2O_3 (oxidised Al granules) and silicate components of the sliding gate sand.

References

- [1] Michelic, S. K., & Bernhard, C. (2022). Significance of Nonmetallic Inclusions for the Clogging Phenomenon in Continuous Casting of Steel—A Review. steel research international, 2200086. [2] Picture source: https://www.ebmeyer.eu/referenzen/projekte/
- [3] Wasson, J. T., & Kallemeyn, G. W. (1988). Compositions of chondrites. *Philosophical Transactions of the* Royal Society of London. Series A, Mathematical and Physical Sciences, 325(1587), 535-544.
- [4] Burty, M., Dunand, P., Ritt, J. P., Soulard, H., Blanchard, A., Jeanne, G., ... & Poissonnet, I. (1997, April). Control of DWI steel cleanness by lanthanum tracing of deoxidation inclusions, ladle slag treatment and a methodical approach. In Ironmaking Conference Proceedings. (Vol. 56, pp. 711-717).

Fig. 7: Left: SEM/EDS element mappings of the clogging layer deposited at the SEN Right: SEM/EDS image and elemental mappings of a La containing NMI

- La and Ce were found in in the SEN clogging layer, in individual NMIs in steel slabs, and in bulk analyses of steel samples (most likely also present in NMIs).
- There is only a short window of time in which REE are available for reactions as in equation 1, before they are oxidised and transferred into the slag phase.
- Therefore, the oxide material building up the clogging layer (and NMIs) must have already been present at the time of La/Ce addition, leaving AI_2O_3 generated from added AI as the most likely source.

Chair of General and Analytical Chemistry | Franz-Josef-Straße 18, 8700 Leoben, Austria