Characterization of technologically produced carbon (CMP)
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The thermal decomposition of methane
IS a process of splitting CH, Into Iits
components (gaseous hydrogen H, and
solid carbon C), primarily developed for the
production of hydrogen (Fig.1).

Triple the amounts of carbon produced
by methane pyrolysis (CMP) are
obtained. This study aims to assess the
performance of CMP compared to biochar
used in agriculture.
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Fig. 1. Pyrolysis of methane and potential application areas of hydrogen and carbon produced by methane pyrolysis (based on flaticon.com)

Aim of study

I.  Analysis of the chemical and physical
properties of carbon produced by
methane pyrolysis in comparison to
biochar

Il. Investigation of the potential of CMP
for agricultural application

Ill. Evaluation of soil improvement, plant
growth characteristics, and nutrient
uptake of maize plants as a result of
the use of CMP

Carbon in ag

Benefits of applying carbon to the soil

Enhanced soil structure

(porosity of biochar and interaction
with soil particles): better root growth
and less erosion and nutrient losses

Water holding capacity
(hydrophobicity and surface
area of biochar): less drought
stress

Improved nutrient (soil fertility) and

pollutant binding due to more reactive
surfaces and binding sites (carboxylic

groups)

Part I: CMP char
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Chemical data relative to European Biochar Certificate (EBC) Set up (Fig. 5)

riculture Methodology

Increased microbial activity

and diversity: improved nutrient
cycling

Liming effect on
acidic soils (high pH
of biochar)

Carbon storage and reduced

N,O emissions: mitigation of Freeze dryer ZS-10
climate change (Drawell Sci. China)

Soja et al., 2012
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Fig. 5. Experimental plan and set up of the field experiment
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Fig. 6. Mass fraction of zinc (a) and copper (b) in aboveground maize tissues. Error bars: SD (n=5)
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Fig. 7. Comparison of plant-available phosphorus in soil (a) and mass fraction of phosphorus in aboveground maize tissues (b).

control  B10  CMP1 CMP5 CMP10 CMP 25 CMP has no negative effect on the nutrient concentration in maize (Fig. 6)
nd maize tissues. Error bars: SD (n=3). Plant available P in the soll tends to be higher in CMP treated solls (Fig. 7)

Results & Conclusions

* Biomass tends to increase with higher CMP supply (Fig. 4) ® Carbon produced by methane pyrolysis (CMP) has potential for use in agriculture

« Total mass fraction of selected nutrients in aboveground maize tissues treated o

with CMP is higher than the control and c
tissues (Fig. 4)

omparable to biochar treated maize 2

manure or compost
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